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1. Introduction

In 1970, new blading was designed for the large 3 stage

axial research compressor (36 inches O.D by 21 6 inches I.D)

at the Turbopropulsion Laboratory at the Naval Postgraduate

School. (Ref 1). The design was reported in Ref 2 and the

installation of the compressor in Ref 3. A program to examine

the effects of tip clearance gap on the performance of dif-

ferent designs of compressor blading was proposed and the new

blading was intended to provide a base data-set for blading

of a then conventional type. The new blading was designed

for uniform energy input along the radius and employed high

aerodynamic loading. The design was however, of the symmetrical

type, for reasons discussed in detail in Ref 2 and Ref 4.

Other blading sets also available for, and previously used in

the compressor were free vortex, forced vortex (or solid body)

and constant angle designs, but were much more lightly loaded.

The intended research program was interrupted for a

period of more than seven years. Recently, work was resumed

and the new compressor blading was completed and one stage

was installed. The present report documents the results of

calculations carried out but not reported in the earlier phase

of the program completed in 1971.

Calculations were made to determine the radial equilibrium

conditions for different bladings designed to have uniform

energy input along the radius, with and without a specific

radial energy gradient as an inlet condition to the stage. The

calculations were made for a single stage (in a repeating stage

design) using the computer program given in Ref 5.
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2. Approach

Three-dimensional flow calculations in turbomachines are

generally carried out in a simplified way. The flow is

assumed to be axisymmetric and steady, and the equation of

motion is solved between the blade rows only. The influences

of the streamline curvature, of the entropy and enthalpy

gradients along the blade height are sometimes but not always

taken into account.

The direct design method usually applied for axial compres-

sor stages assumes that the blades designed with 2-dimensional

cascade data produce the calculated flow angles. This method

has been generally successful for moderate blade loadings. It

was applied in the design of blading reported in Ref 2 which

has a high aerodynamic loading. The method for the flow

calculations used in Ref 2 is given in Ref 4. A computer

program, based on the same method, but which takes into account

the influences mentioned above, as well as the distribution of

the losses along the blade height, was reported in Ref 5.

Using the program (and specified loss models) in Ref 5, cal-

culations were carried out using the geometrical data of the

blading. In the first series, the hand-calculations of Ref 2

were checked. The agreement was found to be good. In the second

series, 7 cases with different degrees of reaction over the blade

height were calculated in order to survey other possible types

of bladings. The goal was to find a blading having:

- uniform inlet velocities relative to the rotor

as well as to the stator, which were small compared
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with the peripheral velocity

- diffusion factors for all profile sections as high

as the necessary stall limit permitted.

In the third series, the effect of a further degree of freedom

was investigated; namely, the influence of imposed enthalpy

gradients. This influence has been found to be considerable,

(Ref 4).

Results of the second and third series of calculations

are presented here. They provide information, which, together

with the experiments carried out with the symmetrical blading,

help determine what type of blading should be selected for a

second phase of the test program.

3. Procedure

The type of stage considered and the notation for the

following discussion are given in Fig 1 and Fig 2. The degree

of reaction is assumed to be 50% at the mean radius Rm . The

degree of reaction is defined here as

r* ~V ul + V u2()r* = 1 - +u 2 (1)

(R 1 + R 2)

where w is the angular velocity.

The energy input

AH = w(R2 Vu 2 - R1 Vul) =K (2)

is assumed to be constant over the blade height in the present

calculations. A variety of stages is analyzed with the general
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distribution of the peripheral components of the absolute

velocity ahead of the rotor being given by

Rm R
Vul A-- + B + C (3)

Eqs. (1), (2) and (3) give the relationship between the

coefficients A, B and C with the degree of reaction

r*(R) 2 (A + + B + C (4)
mm

With the assumed conditions, each special case can be repre-

sented by a point in a rectangular coordinate system with A,

B and C measured along the axes. As shown in Fig 3, all

possible points lie in a plane. In addition to the three more

familiar blade types, i.e.

free vortex; A (w Rm - K_), B = C = 0m

V = const.; B = (w Rm - -), A C 0
ul R

K

forced vortex; C = (& Rm - !-), A = B = 0
m

the three other cases identified in Fig 3 were investigated

here. It was thought that these examples would illustrate the

range of possibilities that exist with and without imposed

enthalpy gradients.

The distribution of the degree of reaction over the blade

height is shown in Fig 4. The same cases were investigated

4



with an imposed enthalpy gradient which is assumed to be

constant over the blade height. It can therefore be repre-

sented by

M_ 2 w K (5)
_R Rt -R h

where the factor 4 itself gives the magnitude of the gradient.

The two assumptions made above (AH =constant over blade

height, r* = 0.50 at R =PN) are retained because we are con-

sidering a so-called standard stage. The enthalpy gradient

has to be produced by an entrance stage. Selected values

for the present calculations were taken between 4 = -0.15

(negative enthalpy gradient) and 4=+0.15 (positive gradient).

4. Results for Uniform Enthalpy (4=0)

Figs. 5a and 5b show the distribution of the axial

velocity component upstream and downstream the rotor. At

station 1, the velocity profile of the free vortex flow is

nearly uniform as one would expect in a flow without enthalpy

and entropy gradients. Since the losses produced by the rotor

are not uniformly distributed over the ulade height, there is

an entropy gradient at station 2. This gradient is large near

the tip due to end losses and tip clearance losses. The con-

siderable influence of the entropy gradient is seen best in

the velocity profile of the free vortex flow, Fig 5b which is

not uniform any more.

%_I 4NOMMM5



The relative inlet velocity ahead of the rotor is plotted

in Fig. 6. It shows the well known result that bladings as

free vortex type, Vul = constant, case , that means bladings

with a low coefficient C in Eq. (4), are not suited for axial

compressors of high flow rate and high pressure rise per stage.

For a given maximum Mach number, these stages must be operated

at lower peripheral velocities due to the conditions at the

rotor tip. However, bladings with a high coefficient C

(symmetrical type, cases M and J , Fig. 3) are much more

favorable in this respect.

Figs. 7a and 7b show the increase of the static pressure

in the rotor and in the stator, respectively. The pressure rise
2

is shown in dimensionless form using the quantity p(oRm ) T. he

bladings with high coefficients C have a lower static pressure

difference at the rotor tip and at the stator hub, respective-

ly, than the other cases. This would be expected to reduce

the importance of tip clearance effects.

The NASA diffusion factors are shown in Figs. 8a and 8b.

A blading with a lower degree of reaction near the rotor tip

than that obtained in case E would yield a large diffusion

factor at the tip of the rotor as well as at the tip of the

stator. Therefore, case 0 represents the other extreme to

the vortex flow.

5. Results for Uniform Radial Enthalpy Gradient ( O)

For comparison with the results for 0 = , the same

quantities are plotted in Figs. 9 - 12 assuming a positive
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enthalpy gradient with 4 +0.15. The free vortex flow is

not irrotational any more as the non-uniform velocity profiles

ahead and after the rotor show, (Figs. 9a and 9b). A positive

enthalpy gradient tends to "equalize" the velocity profiles of

bladings with high coefficient C, due to the fact that the

pressure distribution ahead of the stage is different from

that one would obtain with 0 = . An almost uniform relative

inlet velocity is obtained with a symmetrical blading, (Fig.

10.) It is clear that the pressure rise in the rotor at

constant energy input and given distribution of the degree of

reaction over the blade height is influenced very little by an

enthalpy gradient. The difference is due to changes of the

losses in the rotor, (Figs. 11 and 7a.)

A positive enthalpy gradient reduces the blade loading

at the rotor tip as well as at the stator tip, (Figs. lla and

llb.) The situation becomes worse at the stator hub where we

have the stator blade gap. However, the most interesting

cases (high coefficient C) are not critical in this respect,

since the diffusion factors near the stator hub are at a low

level, (Figs. llb, 15a.) Figs. 13 - 15 show the influence of

the imposed enthalpy gradient on the most interesting proper-

ties of the different blade types.

6. Concluding Remarks

According to these calculations, the selection of an

imposed enthalpy gradient gives an additional degree of

freedom in the design of axial compressor stages. Favorable

7



flow patterns for particular applications can be obtained. In

regard to the proposed research program, the symmetrical

blading as selected in Ref. 2 for the first phase of experi-

ments, turns out to be a good choice. This type of blading is

found to be less Mach number limited by conditions at the outer

radius. In addition, the increase of static pressure at the

rotor tip is smaller than for the other bladings, excent for

case 0] . The blade loading at the critical stations at

the rotor tip and at the stator hub, where the clearance losses

occur, is not too excessive. The situation can be improved

by an imposed positive enthalpy gradient of about $ = 0.15.

This yields a favorable distribution of the diffusion factors,

in the rotor as well as in the stator, Figs. lla and llb.) In

addition, this blading has an almost constant relative inlet

Mach number ahead of the rotor, (Fig. 10.)

Based on these calculations, the preliminary conclusion

is that an entrance stage should be added which produces an

enthalpy gradient of about $ = 0.15. The absolute peripheral

velocity component downstream of this entrance stage has to

be equal to that required ahead of a standard stage with sym-

metrical blading and constant energy input over the blade

height. Such a blading has moderate changes of the flow angles

over the blade height, (Fig. 16), and the changes of the

absolute and relative flow angles, (Fig. 2,) are quite similar.

Therefore, the blades have a reasonably small twist; hence they

are favorable with respect to mechanical stresses.
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FIG. 4 KINEMATIC DEGREE OF REACTION OVER
BLADE HEIGHT FOR DIFFERENT CASES

C) free vortex I~pure forced vortex
El Vul constant caseM

W< case M symmetric
*caseC3

.8

.. 6

.2

.75 .875 1.0 1.125 1.25

R/R

12



I--

-U 
.:

.1 , - i 4

Id'

1 '47



' ~ .. .. ....

T:,7

.I. .. "
gJf

LA-.

v t- 7 1L - w sL5

17:14

_______________________________________________________1~~~a.

LL~m t.:



-77 7:iii ... ..

.. .... ~ ...... .. *~ t

-,:, I: :n

hTi

7w

w.,w



7r 1  -774'-7
2:1, 1, 4l

0-.. 09A

-K

.__...____L..L



__ 

-7

0 .7 09 A

pc R w~-

................ ........ ........... 2.

7-7

7V 
~

It~

iaa d
U

w~ .....
7t77

___ 
~ oJ~j<3~la:

I .... .

7517



iff.t. .. ....

. .:4 . .. .. . .

L I.

,_2.7

7-7 ..

-17r

7 77 77- - ---- - I--

w -75



j77f F~L ~ i A~~ F ... ...... 2.....
..... (... ... .... - - .

7 7T h 7 7 ....

7-7-777177.

Fl 7  H > 7  -.
~ 1117

... ... ..
-i -o -

.... ..... . ..

1~~~ 25

-I/R



FIG. 9a AXIAL VELOCITY PROFILE AHEAD) OF THE ROTOR,
WITH IMPOGED ENHALPY GRAINT =+0.15

(Symbols, see Fig. 4)
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FIG. 9b AXIAL VELOCITY PROFILE AFTER THE ROTOR,

(Symbols, see Fig. 4)
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FIG. 10 RELATIVE VELOCITY AHEAD OF THE ROTrOR,
WITH IMPOSED ENTHALPY GRADIENT =+0.15

(Symbols, see Fig. 4 )
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FIG. lla NACA DIFFUSION FACTOR OVER ROTOR BLADE HIGHT,
WITH IMPC6N) ENTHALPY GRADIT C=+0-15
(Symbol.s, see Fig. 4)
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FIG. lib NACA DIFFUSION FACTOR OVER STATOR BLADE HEIGHT,
WITH IMPOSED UNTHALPY GRADIENT +0.15

(Symbols, see Fig. 4)
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FIG. 12 i.NCUABE OF STATIC PRESSURE IN THE ROTOR,

WITH I3EPOSND ENTHALP GRADIENT C =+0.15

4 (Symbols, see Fig. 4
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FIG. 13 INFLUENCE OF THE IMPOSED ENTHALPY GRADIENT
ON THE RELATIVE VELOCITY AT THE ROT1OR TIP
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FIG. 14 INFLUENCE OF fl4owE ENTHiALpy GRADIENT
ON THE~ NACA DIFFUSION FACTOR AT ROTOR TIP
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FIG. 1gai ImrLUENCE OF THE imposzD ENTHALpy GRADIENT
ON THE NACA DIFFUSION FACTOR AT STATCR HUB
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FIG4 J.5b INFLUENCE OF THE D4POSED ENITHALPY GRADENiT
ON THE NACA DIFFUSION FACTOR AT STATOR TIP
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FIG. 116 RELATIVE FLOW A1M3LES AHEAD (01) AND AFMR THE ROTOR (132)
FOR SY1OMTRICAL BLADING

-with positive enthalpy gradient (C =+0-15)
-- without enthalpy gradient (C 0)
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